Failure Tolerant Operation of Kinematically Redundant Manipulators

نویسندگان

  • Christopher L. Lewis
  • Anthony A. Maciejewski
چکیده

The high cost involved in the retrieval and repair of robotic manipulators used for remediating nuclear waste, processing hazardous chemicals, or for exploring space or the deep sea, places a premium on the reliability of the system as a whole. For such applications, kinematically redundant manipulators are inherently more reliable since the additional degrees of freedom (DOF) may compensate for a failed joint. In this work, a redundant manipulator is considered to be fault tolerant with respect to a given task if it is guaranteed to be capable of performing the task after any one of its joints has failed and is locked in place. A method is developed for insuring the failure tolerance of kinematically redundant manipulators with respect to a given critical task. Techniques are developed for analyzing the manipulator's workspace to find regions which are inherently suitable for critical tasks due to their relatively high level of failure tolerance. Then, constraints are imposed on the range of motion of the manipulator to guarantee that a given task is completable regardless of which joint fails.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A path planning strategy for kinematically redundant manipulators anticipating joint failures in the presence of obstacles

This work considers the failure tolerant operation of a kinematically redundant manipulator in an environment containing obstacles. In particular, the article addresses the problem of planning a collision-free path for a manipulator operating in a static environment such that the manipulator can reach its desired goal despite a single locked-joint failure and the presence of obstacles in the en...

متن کامل

Fault tolerant operation of kinematically redundant manipulators for locked joint failures

| This work studies the degree to which the kinematic redundancy of a manipulator may be utilized for failure tolerance. A redundant manipulator is considered to be fault tolerant with respect to a given task if it is guaranteed to be capable of performing the task after any one of its joints has failed and is locked in place. A method is developed for determining the necessary constraints whic...

متن کامل

The Design of Control Strategies Tolerant to Undetected Failures in Kinematically Redundant Manipulators

The use of robots in hostile environments significantly increases the likelihood of failures in the robot's subsystems. Existing techniques for developing failure tolerant robots rely on effective failure detection and identification. Since failure identification is itself a difficult process that may not always be successful, it is important to consider the behavior of the robot prior to ident...

متن کامل

Kinematically Redundant Manipulator

being solved to determine the corresponding required joint values, 8(t;). A kinematically redundant manipulator can, in general, satisfy an end-effector positioning constraint, x(t;), with an infinite family of joint values satisfying (2). The underlying premise for advocating the use of redundant manipulators for critical applications is that if a joint should fail, then the redundancy of the ...

متن کامل

Real-time failure-tolerant control of kinematically redundant manipulators

This work considers real-time fault-tolerant control of kinematically redundant manipulators to single locked-joint failures. The fault-tolerance measure used is a worst-case quantity, given by the minimum, over all single joint failures, of the minimum singular value of the post-failure Jacobians. Given any end-effector trajectory, the goal is to continuously follow this trajectory with the ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009